Main Article Content

Febrinasti Alia
Febrian Hadinata
Arief Trimahmudi
Nyimas Ida Apriani

Abstract

Climate change is mainly anthropogenic mostly caused by urbanization, human activities in economics, industry, and transportation. The expansion of built-up land, deforestation and the loss of farmland are closely linked to land use and land use change. Greenhouse gas emissions produced by the land use sector can significantly affect global carbon budgets by changing the carbon storage level in terrestrial ecosystem vegetation and soil. In 2005, Indonesia was responsible for approximately 85% of carbon emissions. The Indonesian government is combating environmental issues by mandating local governments, including Palembang City, to conduct greenhouse gas inventories. Changes in land use and the amount of carbon stock in Palembang City can be taken into consideration by the Palembang City Government in dealing with climate change. Data analysis was carried out by interpreting satellite imagery SPOT-7 and classification of land use data into six classes based on AFOLU guidelines. The area derived from land use transition matrix of the period 2012-2018 is used as a basis to calculate greenhouse gas emissions. The greenhouse gas emissions were then calculated using the Gain-Loss method based on the IPCC journal as a reference. Due to land use and land use change from 2012 to 2018, Palembang City emits greenhouse gas as much as -149098.5827 Tonnes C/Year in total. Forest Land Category -26557.22425 Tonnes C/Year, Crop Land Category -112739.8894 Tonnes C/Year, Grass Land Category -32257.56413 Tonnes C/Year, Wetland Category -20721.68315 Tonnes C/Year, Settlement Category 43273.249 Tonnes C/Year and Other Land Category -95.4708 Tonnes C/Year. Inventories on greenhouse gas (GHG) emissions and absorption trends are crucial for climate change mitigation strategies in Palembang. One important strategy towards achieving net zero emissions by 2060, as initiated by the Government of Indonesia, is to curb carbon release associated with land use changes.

Downloads

Download data is not yet available.

Article Details

How to Cite
Alia, F., Hadinata, F., Trimahmudi, A., & Apriani, N. I. (2024). Impact of Land Use and Land Use Change on Greenhouse Gas Emissions in Palembang City: Dampak Penggunaan Lahan dan Perubahan Tata Guna Lahan terhadap Emisi Gas Rumah Kaca di Kota Palembang. Cantilever: Jurnal Penelitian Dan Kajian Bidang Teknik Sipil, 13(2), 129-138. https://doi.org/10.35139/cantilever.v13i2.338
References
[1] S. Tian et al., “Global patterns and changes of carbon emissions from land use during 1992–2015,” Environmental Science and Ecotechnology, vol. 7, p. 100108, Jul. 2021, doi: 10.1016/j.ese.2021.100108.
[2] D. K. Yuliana, “Tingkat Emisi Gas Rumah Kaca di Kabupaten Indramayu,” JSTMB, vol. 12, no. 2, p. 1, Jan. 2018, doi: 10.29122/jstmb.v12i2.2098.
[3] .., “Carbon Trading in the Agriculture, Forest, and Land Use Sectors,” RAS, vol. 14, no. 1, pp. 7–10, Jul. 2024, doi: 10.25003/RAS.14.01.0003.
[4] U. F. Kurniawati, “Dampak Perubahan Penggunaan Lahan Terhadap Besaran Stok Karbon di Kota Surabaya,” Jurnal Penataan Ruang, vol. 16, no. 1, p. 54, Mar. 2021, doi: 10.12962/j2716179X.v16i1.8951.
[5] Y. Zhou, M. Chen, Z. Tang, and Z. Mei, “Urbanization, land use change, and carbon emissions: Quantitative assessments for city-level carbon emissions in Beijing-Tianjin-Hebei region,” Sustainable Cities and Society, vol. 66, p. 102701, Mar. 2021, doi: 10.1016/j.scs.2020.102701.
[6] H. Briassoulis, “Analysis of Land Use Change: Theoretical and Modeling Approaches”.
[7] Z. Li, B. Chen, S. Wu, M. Su, J. M. Chen, and B. Xu, “Deep learning for urban land use category classification: A review and experimental assessment,” Remote Sensing of Environment, vol. 311, p. 114290, Sep. 2024, doi: 10.1016/j.rse.2024.114290.
[8] J. Li, X. Huang, X. Chuai, and H. Yang, “The impact of land urbanization on carbon dioxide emissions in the Yangtze River Delta, China: A multiscale perspective,” Cities, vol. 116, p. 103275, Sep. 2021, doi: 10.1016/j.cities.2021.103275.
[9] X. Chuai et al., “Multiangle land use-linked carbon balance examination in Nanjing City, China,” Land Use Policy, vol. 84, pp. 305–315, May 2019, doi: 10.1016/j.landusepol.2019.03.003.
[10] R. K. Karina and R. Kurniawan, “IDENTIFIKASI PENGGUNAAN LAHAN MENGGUNAKAN CITRA SATELIT LANDSAT 8 MELALUI GOOGLE EARTH ENGINE,” semnasoffstat, vol. 2020, no. 1, pp. 798–805, Jan. 2021, doi: 10.34123/semnasoffstat.v2020i1.514.
[11] M. A. Apriliadi, “KLASIFIKASI TUTUPAN LAHAN DENGAN MENGGUNAKAN CITRA LANDSAT 8 DI KOTA BANDA ACEH DAN KABUPATEN ACEH BESAR,” 2019.
[12] R. N. Masolele et al., “Spatial and temporal deep learning methods for deriving land-use following deforestation: A pan-tropical case study using Landsat time series,” Remote Sensing of Environment, vol. 264, p. 112600, Oct. 2021, doi: 10.1016/j.rse.2021.112600.
[13] R. McRoberts, E. Næsset, C. Sannier, S. Stehman, and E. Tomppo, “Remote Sensing Support for the Gain-Loss Approach for Greenhouse Gas Inventories,” Remote Sensing, vol. 12, no. 11, p. 1891, Jun. 2020, doi: 10.3390/rs12111891.
[14] C. B. Pribadi, T. Hariyanto, and J. A. R. Hakim, “Kajian Updating Peta Menggunakan Data Dasar Citra Satelit Worldview-2 dan Peta Garis Kota Surabaya Skala 1:5000 (Studi Kasus: Kecamatan Sukolilo dan Kecamatan Gunung Anyar),” 2013.
[15] A. Noraini and H. H. Handayani, “UPDATING PETA TUTUPAN LAHAN MENGGUNAKAN CITRA SATELIT RESOLUSI TINGGI (STUDI KASUS : KECAMATAN PAKAL, KOTA SURABAYA),” Geoid, vol. 9, no. 1, p. 39, Aug. 2013, doi: 10.12962/j24423998.v9i1.739.