Main Article Content

Dapit Bawono
Resmi Bestari Muin

Abstract

The average temperature of the earth's surface has increased by 0.74 ± 0.18°C over the past hundred years, caused by 65% carbon dioxide (CO2) emissions. Of the total CO2 emissions, around 6% come from the cement industry. Geopolymer concrete can be a solution to the problem because it does not use cement as a binder, but uses fly ash and activator materials. This activator material is to activate fly ash to become a binder. The aim of this study was to determine the effect of variations in the molarity of the NaOH activator on the workability, setting time, and compressive strength of geopolymer concrete. This study used fly ash from PLTU Lontar with a ratio of NaOH:NNa2SiO3 of 1:1.5, then the NaOH was varied with concentration levels of 5 Molar, 8 Molar, 11 Molar, and 14 Molar. From this research, it is known that the molarity level of the activator (NaOH) affects the workability (slump value), setting time, and compressive strength of concrete. The higher the molarity level of the activator (NaOH), the lower the workability of the concrete (the slump value decreases), the slower the setting time of the concrete, and the higher the compressive strength of the concrete. The most optimal variation is 14 Molar NaOH geopolymer with a slump value of 15 cm, initial setting time of 90 minutes, final setting time of 203 minutes, and compressive strength at 28 days of 54.60 MPa.

Downloads

Download data is not yet available.

Article Details

How to Cite
Bawono, D., & Muin, R. B. (2024). Efek Molaritas Aktivator (NaOH) pada Beton Geopolymer dengan Bahan Pengikat Limbah Fly Ash PLTU Lontar. Cantilever: Jurnal Penelitian Dan Kajian Bidang Teknik Sipil, 12(2), 111-120. https://doi.org/10.35139/cantilever.v12i2.253
References
ASTM C403/C403M-99. (1999). Standard Test Method for Time of Setting of Concrete Mixtures by Penetration Resistance. Annual Book of ASTM Standards.
ASTM C494. (2013). Standard Specification for Chemical Admixtures for Concrete. Annual Book of ASTM Standards.
Davidovits, J. (1991). Geopolymers: Inorganic Polymeric New Materials. Journal of Thermal Analysis, 37(8), 1633–1656. https://doi.org/10.1007/BF01912193
Ekaputri, J. J., & Triwulan, T. (2013). Sodium sebagai Aktivator Fly Ash, Trass dan Lumpur Sidoarjo dalam Beton Geopolimer. Jurnal Teknik Sipil, 20(1), 1. https://doi.org/10.5614/jts.2013.20.1.1
Hamidi, R. M., Man, Z., & Azizli, K. A. (2016). Concentration of NaOH and the Effect on the Properties of Fly Ash Based Geopolymer. Procedia Engineering, 148, 189–193. https://doi.org/10.1016/j.proeng.2016.06.568
Hassan, A. (2018). Experimental Study of Fly Ash Based Geopolymer Concrete. International Journal of Advanced Earth Science and Engineering, 7(1), 635–648. https://doi.org/10.23953/cloud.ijaese.344
Hermawan, A., Wijayanto, D., Aprilia, F., Sari, N. I., & Safitry, N. (2022). Implementasi Perang Dagang Pada Persaingan Industri Semen Di Indonesia Sebagai Ancaman Pertahanan Negara Di Era Milenial. Journal of Advanced Research in Defense and Security Studies, 1(1), 1–18. https://ejournal.hakhara-institute.org/index.php/JARDS/article/view/2
Karyawan Salain, I. M. A., Wiryasa, N. M. A., & Adi Pamungkas, I. N. M. M. (2021). Kuat Tekan Beton Geopolimer Menggunakan Abu Terbang. JURNAL SPEKTRAN, 9(1), 76–84. https://doi.org/10.24843/SPEKTRAN.2021.v09.i01.p09
Li, Z., Zhou, X., Ma, H., & Hou, D. (2022). Advanced concrete technology. In Advanced Concrete Technology. Wiley Blackwell. https://doi.org/10.1002/9781119806219
Oktaviastuti, B., Pandulu, G. D., & Lusyana, E. (2021). Kuat Tekan Beton Geopolymer Berbahan Dasar Abu Terbang (Fly Ash) Sebagai Alternatif Perkerasan Kaku di Daerah Pesisir. Reka Buana : Jurnal Ilmiah Teknik Sipil dan Teknik Kimia, 6(1), 78–87. https://doi.org/10.33366/rekabuana.v6i1.2271
Panjaitan, P. E., & Herlina, L. (2020). Review Faktor - Faktor yang Mempengaruhi Karakteristik Kuat Tekan Beton Geopolimer. Jurnal Rekayasa Konstruksi Mekanika Sipil (JRKMS), 03(02), 65–79. https://doi.org/10.54367/jrkms.v3i2.858
Pavithra, P., Srinivasula Reddy, M., Dinakar, P., Hanumantha Rao, B., Satpathy, B. K., & Mohanty, A. N. (2016). A mix design procedure for geopolymer concrete with fly ash. Journal of Cleaner Production, 133, 117–125. https://doi.org/10.1016/j.jclepro.2016.05.041
Pengendalian Perubahan Iklim, D. J. (2016). Perubahan Iklim, Perjanjian Paris, Dan Nationally Determined Contribution (1 ed.). Kementerian Lingkungan Hidup dan Kehutanan. https://ditjenppi.menlhk.go.id/reddplus/images/resources/buku_pintar/buku-pintar-PPI-21-6-2016-ISBN-FA_opt.pdf
Risdanareni, P., Puspitasari, P., & Januarti Jaya, E. (2017). Chemical and Physical Characterization of Fly Ash as Geopolymer Material. MATEC Web of Conferences, 97. https://doi.org/10.1051/matecconf/20179701031
Rozi, M. F., Johannes Tarigan, & Ahmad Perwira. (2020). Analisis Sifat Mekanik Beton Geopolymer Berbahan Dasar Fly Ash PLTU Pangkalan Susu. Jurnal Health Sains, 1(5), 567–579. https://doi.org/10.46799/jsa.v1i5.82
Samadhi, T. W., & Pratama, P. P. (2018). Pembuatan Geopolimer Dari Metakaolin dan Abu Terbang. Jurnal Teknik Kimia Indonesia, 12(5), 265–274. https://doi.org/10.5614/jtki.2013.12.2.6
Santoso, T. B., Prastyanto, C. A., & Ekaputri, J. J. (2021). Pemanfaatan Lumpur Sidoarjo dan Fly Ash Sebagai Material Buatan Berbasis Pasta Berdasarkan Nilai Kuat Tekan dan Keausan. Jurnal Aplikasi Teknik Sipil, 19(1), 39–44. https://doi.org/10.12962/j2579-891x.v19i1.8444
Sari, D. K., Setyaningsih, E. P., Fansuri, H., & Susanto, T. E. (2018). Kajian Karakteristik Kimia dan Fisika Abu Layang yang Menjadi Penentu Kekuatan Mekanik Perekat Geopolimer Berbahan Dasar Abu Layang. Akta Kimia Indonesia, 3(2), 222. https://doi.org/10.12962/j25493736.v3i2.4563
Singh, N. B. (2018). Fly ash-based geopolymer binder: A future construction material. Minerals, 8(7). https://doi.org/10.3390/min8070299
SNI-03-6468-2000. (2000). Tata Cara Perencanaan Campuran Tinggi Dengan Semen Portland. Badan Standar Nasional.
SNI 1972-2008. (2008). Cara Uji Slump Beton. In Badan Standar Nasional (hal. 5).
SNI 1974:2011. (2011). Cara Uji Kuat Tekan Beton dengan Benda Uji Silinder. Badan Standardisasi Nasional, 20.