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Abstract  

The ANN procedure was used to develop an explicit equation for predicting the water level profile in a gradually varied 

flow. The equation consists of a series of hyperbolic tangent functions, with the number of series being the same as the 

number on the node in the hidden layer. The ANN model consists of 3 layers: the input layer consists of four nodes, the 

hidden layer has seven nodes and one node in the output layer. The input parameters used are parameters related to 

distance, discharge, roughness, and depth of flow at the downstream end of the channel. The output parameter is the 

flow depth at various points. The model has been used to estimate the water level profile for different flow conditions. 

The comparison between the explicit ANN model and the numerical model results is satisfactory. The models can be 

extended to study more complex flows and non-prismatic channels. The model is promising as a tool in decision support. 
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1. INTRODUCTION 

The study of flow characteristics in a channel or 

river is an essential aspect in planning or designing 

processes of a regional drainage system. The 

engineers need to analyze the behavior of the flow in 

the channel due to various scenarios. Flood events, 

tidal effects (for a channel that is affected by tides), 

the impact of garbage or other materials that block 

the flow, water structures (gates, culverts, weirs), 

etc., need to be considered in the design. Two 

hydraulic models often used to study flow behavior 

in channels are physical scale and numerical models. 

The flow is studied with a physical scale model by 

observing it on a design model, which is generally 

made in the laboratory. Meanwhile, the study of 

numerical models is carried out by conducting 

computer simulations of several scenarios based on 

numerical solving of mathematical equations that 

explain the physical processes in a flow.  

Numerical models are currently prevalent because 

of several advantages: relatively cheap, fast, and 

flexible. Several numerical models are available, 

including HEC-RAS, MIKE 11, DUFFLOW, etc. 

Numerical models require input consisting of 

geometry (cross section and bed slope), input 

discharge such as flood discharge and runoff, 

boundary conditions at the ends of the channel, 

channel roughness, water structures, etc. By entering 

the input parameters into the numerical model, a 

modeler can study the flow behavior through 

simulation for various desired scenarios. Users of 

numerical models must have good skills in modelling 

and understanding of hydraulics. What about 

engineers who have no skills in numerical modeling 

going to study flow behavior in channels? This 

obstacle can be overcome if an explicit model that 

connects the input and output parameters relating to 

input flow and channel geometry is available.  

This study proposes an explicit equation that 

represents the channel's flow pattern. The equations 

are built using an artificial neural network approach. 

This study aims to provide a method for developing 

an explicit equation for the flow pattern in a channel 

based on an Artificial Neural Network (ANN) 

procedure. The equations are built using a numerical 

model based on many data (big data). The study is 

limited to the problem of steady flow in prismatic 

channels. Further development of explicit equations 

can be carried out for unsteady and non-prismatic 

flows using the same principle. The following 

sections will discuss the numerical model of gradual 

changing flow, a brief explanation of ANN, explicit 

equation development methodology, model 

simulation, and discussion and conclusions. 
 

2. METHODOLOGY 
Numerical Model 

Consider a channel diagram and flow conditions 

in Figure 1. The subcritical steady gradually varied 

flow equation can be expressed by equation (1) below 

(Subramanya, 2009). 

 
𝑑ℎ

𝑑𝑥
 =  

𝑆𝑜 − 𝑆𝑓

1 − 𝐹𝑟
2   =  𝐹(𝑥, ℎ)  (1) 
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with 

𝑆𝑓 =
𝑛2 𝑄2

𝐴2𝑅4/3 
   

𝐹𝑟 =
𝑄2𝑇

𝑔𝐴3    

𝑇 = 𝐵 + 2𝑚ℎ   

𝐴 = (𝐵 + 𝑚ℎ)ℎ, 𝑅 =
𝐴

𝑃
   

𝑃 =  𝐵 +  2ℎ√1 + 𝑚2   
 

where B = bottom width, h = flow depth, m = cross-

sectional side slope, So = bed slope, Sf = flow energy 

slope, A = wet cross-sectional area, P = wet 

circumference, R = hydraulic radius, Fr = Froud 

number, x = distance. Equation (1) can be solved in 

various ways. The often-used methods are the 

standard step method and finite difference technique 

such as Euler, modified Euler, and Runge-Kutta 

methods (Chapra and Canale, 2010; Subramanya, 

2009). We use the modified Euler technique for the 

discretization of equation (1). First, the length of the 

channel is divided into several segments with the 

width of the segment Δx. Let hi is known flow depth 

at point xi, then the flow depth at point xi+1, hi+1 can 

be determined using equation (2.a)−(2.d) 

(Subramanya, 2009). 

 

 
Figure 1.  Schematic for gradually varied flow together with 

flow parameters and channel geometry. 

 

ℎ𝑖+1 =  ℎ𝑖  +  0.5(𝑘𝑜 + 𝑘1)∆𝑥  (2.a) 

𝑘𝑜 = 𝐹(𝑥𝑖, ℎ𝑖)  (2.b) 

ℎ𝑖
𝑝

= ℎ𝑖 + 𝑘𝑜∆𝑥  (2.c) 

𝑘1 =  𝐹(𝑥𝑖+1, ℎ𝑖
𝑝

)  (2.d) 

 

where hi and hi+1 are the flow depths at points xi and 

xi+1, respectively. The calculation starts from the 

segment containing the boundary conditions. it can 

start from the end of the upstream or downstream 

boundary conditions. 

 
Explicit ANN Formulation 

Artificial Neural Networks is a black-box model 

that connects input and output parameters. According 

to Hu et al. (2018), the Artificial Neural Network 

(ANN) function imitates the neural working process 

of the human brain, which is a form of Artificial 

Intelligence (AI). ANN can be trained with datasets 

into models that can predict and prepare their 

intrinsic relationships. The ANN model is an efficient 

tool to display nonlinear and complex relationships 

between inputs and outputs. The use of ANN model 

has been widely used in water engineering. For 

example: in suspended sediment estimations 

(Cigizoglu, 2006; Kisi, 2008), in the prediction of 

bed sediment load (Sahraei, et al., 2017; Riahi-

Madvar and Seifi, 2018), in river flow study (Adnan 

et al., 2019; Aqil et al., 2007; Cheng et al., 2020; 

Dibiki and Solomatine, 2001; Fu et al. 2020; Huo et 

al. 2012; Imrie et al. 2000; Liu et al., 2020; Ni et al. 

2010; Noori and Kalin, 2016; Shamshirband et al., 

2020; Xang and Demir 2020), in rainfall-runoff 

modeling (Xiang et al., 2020), flood predicting 

(Mosavi and Ozturk, 2018), hydraulic jump (Omid et 

al., 2005), etc. The ANN model is implicit, and for 

those who are not familiar with ANN, it won't be easy 

to understand and apply it in the practices. Therefore, 

in this study, an explicit form of the ANN model will 

be developed so that it is easy to use for those who 

are not familiar with ANN. 

The often-used ANN model is a feed-forward 

neural network with three layers: input, hidden, and 

output. Each layer has several nodes (neurons) that 

are connected to other nodes in the next layer. The 

model has a feed-forward phase that propagates the 

input signal forward to each node in the front layer 

until it reaches the output layer, and the error 

propagates back (error backward propagation) and 

modifies the connection relationship between nodes 

(weight). Error is defined as the difference between 

the calculated value and the observed value of the 

target variable. The input parameters used in the flow 

equation of ANN modeling in this study are B, x, Q, 

So, n, ho, while the output parameter is the flow depth 

h. We consider channels with specific geometries 

with fixed So and B values or set fixed cross-sectional 

shapes. Thus, the input parameter consists of Q, x, n, 

and ho, while the output parameter is the flow depth 

h. The ANN architectural model under review is 

illustrated in Figure 2.  

 

 
Figure 2.  Schematic diagram of ANN configuration, consisting 

of 4 inputs, 7 nodes at hidden layer, and a single 

output node. 

 

The ANN model with configuration in Figure 2 

can be written in mathematics form, defined by 

Equation (3). 
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ℎ𝐴  =  𝐺(∑ 𝜇𝑘  𝐻(∑ 𝛼𝑖  �̅�1
𝑖=𝑁
𝑖=1  + 𝛽𝑖 𝜂�̅�2  +𝑀

𝑘=1

 𝜃𝑖 �̅�3 + 𝜔𝑖�̅�4 + 𝑏𝑖) + 𝜇𝑀+1) (3) 
 

with �̅�𝑖 are input values in the normalized form at 

node i, hA is output, g1 is activation function 

(nonlinear) for the hidden layer, g2 is activation 

function (linear) for output layer, N and M represent 

the number of neurons in the input and hidden layers, 

αi, βi, θi and ωi and bi are the weights and biases of 

the ith neuron in the input layer to the hidden layer, μk 

are the weights and biases from the hidden layer to 

the output layer. 

Before entering into the network, the input 

parameters need to be normalized using the following 

equation. 
 

�̅�𝑖  =  
2(𝑋𝑖 –𝑋𝑖,𝑚𝑖𝑛)

𝑋𝑖,𝑚𝑎𝑥 – 𝑋𝑖,𝑚𝑖𝑛
  (4) 

 

where Xi,min and Xi,max are the minimum and maximum 

values of the input parameters Xi. Due to space 

limitations, the ANN model is not described in detail 

in this paper. Interested readers can take a look at 

some of the literature (Haykin, S., 1999 ; Rojas, R., 

1996)). The weight and bias values αi, βi, θi and ωi, bi 

and μk are obtained through the training process. In 

this study, the functions g1 and g2 used are hyperbolic 

tanh transformation and linear functions. Setting 

equation (3) will further produce an equation of the 

relationship between the water depth and the input 

parameter Xi, which is defined by equation (5). 
 

ℎ𝐴 =  ∑ 𝜇𝑖  𝑡𝑎𝑛ℎ(𝛼𝑖�̅�1  +  𝛽𝑖  �̅�2  +  𝜃𝑖 �̅�3 +𝑀
𝑖=1

𝜔𝑖�̅�4) + 𝑏𝑖𝜇𝑖)  + 𝜇𝑀+1 (5) 
 

3. DATA GENERATING AND 

SIMULATION 
Creating a database as an input parameter is 

carried out by simulating the numerical model of 

equation (2) for various scenarios. This study reviews 

two-channel geometries with the same bottom width 

B = 30 and the bed slope So = 0.005 and So = 0.001. 

For each channel, seven variations of the quantity of 

discharge Q were chosen, namely 100, 150, 200, 250, 

300, 350 and 400 m3/s, six roughness quantities n, 

starting from n = 0.025, 0.03, 0.035, 0.04 and 0.045, 

30 values of water depth at downstream ho, starting 

from ho = 3.1 to ho = 6 m with an interval of 0.1 m 

increments, and 152 variations of x values, starting 

from x = 1, 3, 5, 10, 20, 30, 40, 50 and so on with 

relationship xi + 1 = xi + 20 m until it reaches the length 

of the farthest point x = 750 m.  Each channel 

generates 52.950 big data. Each data contains 

parameters (B, So, x, Q, n, ho, h). The selection of the 

maximum value of x = 750 m is necessary in order to 

avoid too much data for x values which can result in 

overfitting in the training process. Simulations for x 

values greater than 750 m can be performed using the 

method. The final value of h at the previous 

simulation at xi = 750 m is used as ho. Moreover, the 

data for validation and testing is 5.040 data built with 

four variations of discharge, from Q =125, 175, 230, 

and 320 m3/s, three variations of roughness n from n 

= 0.027, 0.033, and 0.042, and 10 variations of ho 

from 3 to 4.0 m. Variation of x is as in the creation of 

data for training. 

The ANN model requires suitable input 

parameters for better results. If the input parameters 

used are primitive, x, Q, ho, and n, the results are not 

satisfactory. After some numerical tests, the best 

input parameters are X1=x/ho, X2=x/Q, X3=x/n, and 

X4=ho, and the output parameter is the flow depth at 

point xi, hi. The Neural Network Toolbox of 

MATLAB software was used in our analysis, with 

the Levenberg-Marquardt (trainlm) being adopted. 

The author has also developed a program based on 

the above ANN algorithm using an MS Excel 

spreadsheet to create the proposed explicit formulas 

defined in equation (5) using weight values solved by 

the MATLAB software. The optimization results 

produce the coefficient of equation (5). Tables 1 and 

2 contain the coefficients Eq. (5) for each channel 

with So = 0.0025 and So = 0.001, respectively. Figures 

3 and 4 show scatter plots between simulation results 

using numerical models and ANN for training data 

and validation & testing data for channels with So = 

0.0005. Figures 5 and 6 show the plot of the 

corresponding values for the second channel with So 

= 0.001. The training, validation, and testing results 

provide a good correlation for both channels, with a 

correlation value of R2 above 0.99. 
 

Table 1.  Coefficient of Eq. (5) for bed slope So = 0.0005 and B 

= 30 m.  

i/k αi βi θi ωi bi μk 

1 3.4548 6.9938 2.3467 0.1236 6.3705 -1.0562 

2 1.9110 1.5268 1.6737 0.1200 2.2147 9.0247 

3 2.4711 2.3766 1.2360 0.0032 2.5965 19.1036 

4 2.2477 2.2617 1.2237 0.0861 2.4146 38.1156 

5 0.0134 0.0105 0.0088 0.1044 0.0533 13.9426 

6 0.0276 7.2880 0.7913 0.0008 8.1722 -0.4550 

7 1.9561 1.9616 1.3183 0.1136 2.2848 28.2758 

 8           5.5380 

 
Table 2.  Coefficient of Eq. (5) for bed slope So = 0.001 and B = 

30 m.  

i/k αi βi θi ωi bi μk 

1 3.1556 3.3376 1.2876 0.1409 3.3222 15.1271 

2 1.0723 4.2702 1.4300 0.1010 5.8861 39.9470 

3 7.9296 5.5695 2.4568 0.4522 2.1714 0.1237 

4 0.9914 0.1746 0.9756 0.1740 0.2997 2.4208 

5 0.2791 0.0669 0.3003 0.2264 0.0368 -8.0003 

6 3.1969 3.3163 1.3125 0.0808 3.3994 14.4409 

7 1.4681 4.6255 1.6995 0.1152 5.9376 27.9914 

            -6.5550 
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Figure 3.  Plotting of numerical and ANN results for training 

data for channel with So = 0.0005 and B = 30 m. 

 

 
Figure 4.  Plotting of numerical and ANN results for validation 

and testing data for channel with So = 0.0005 and B = 

30 m. 

 

 
Figure 5.  Plotting of numerical and ANN results for training 

data for channel with So = 0.001 and B = 30 m. 

 
 Figure 6.  Plotting of numerical and ANN results for validation 

and testing data for channel with So = 0.001 and B = 

30 m. 

 

These results indicate that the ANN model of 

equation (5) can be used to predict the flow profile in 

the channel. The following shows the use of the ANN 

model equation (5) to predict the flow profile in the 

channel. The first case is the first channel with 

discharge Q = 150 m3/s, n = 0.025 and h0 = 4.0 m. 

Simulations were carried out along 2000 m. 

Simulations to determine the flow profile from 

location x = 700 m to x = 2000 m were carried out 

using the technique described previously. The 

predicted flow depth at x = 700 is used as the ho value 

for the next simulation. The value of x = 0 starts from 

the endpoint of the first simulation, namely x = 700. 

The simulations from x = 1400 to x = 2000 were 

carried out using the same procedure. The simulation 

results are presented in Figure 7 and 8. It can be seen 

from Figures 7 and 8  the prediction results of the 

ANN model Eq.  (5) are very satisfactory, where the 

ANN prediction results profile and numerical model 

coincide. 

 
Figure 7.  Water level profile computed by using numerical and 

ANN for channel with So = 0.0005, Q = 150 m3/s, n = 

0.025 and ho = 4.0 m. 
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Figure 8.  Water level profile computed by using numerical and 

two step simulation of ANN for channel with So = 

0.0005, Q = 150 m3/s, n = 0.025 and ho = 4.0 m. 

 

 
Figure 9.  Water level profile computed by using numerical and 

ANN for channel with So = 0.0005, Q = 350 m3/s, n = 

0.025 and ho = 3.5 m. 

 

The second example is for the same channel with 

discharge Q = 350 m3/s, n = 0.025 and ho = 3.5 m. 

The simulation results are shown in Figure 9. As 

before, the simulation results are very satisfactory. 

The next example is the second channel, S0 = 0.001 

with discharge Q = 300 m3/s, n = 0.033 and h0 = 4.5 

m. The simulation results are shown in Figures 10 

and 11. Like the previous example, the simulation 

gives accurate results. The last example is for 

discharge Q = 400 m3/s, n = 0.033 and ho = 3.2 m. 

The simulation results are very accurate, as shown in 

Figure 12. The simulation results of these cases show 

that the explicit form of the ANN model in equation 

(5) can be used to estimate the water level profile in 

the channel. The use of Eq.  (5) is straightforward, 

and calculations can be done in a spreadsheet without 

coding or programming. 

 

 
 Figure 10.  Water level profile computed by using numerical 

and ANN for channel with So = 0.001, Q = 300 

m3/s, n = 0.033 and ho = 4.5 m. 

 

 
Figure 11.  Water level profile computed by using numerical 

and ANN with two-step simulation for the channel 

with So = 0.001, Q = 300 m3/s, n = 0.033, and ho = 

4.5 m. 

 

 
Figure 12.  Water level profile computed by using numerical 

and ANN for channel with So = 0.001, Q = 400 

m3/s, n = 0.033 and ho = 3.2 m. 
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The ANN model Eq. (5) can be developed for the 

study of more complex flow behavior, such as 

unsteady flow in non-prismatic channels. The model 

development procedure is the same. First of all, a 

numerical model is used to simulate the flow 

conditions in the river based on the available flow and 

geometries data. Numerical models need to be 

calibrated. After the numerical model is calibrated, 

then several model simulations are carried out for the 

various scenarios considered, such as flooding, gate 

operation failure, tidal effect, etc. The simulation 

produces an extensive database, which is used to 

build the ANN model. The ANN model obtained will 

help to predict the flow conditions that will occur due 

to changes in input to the river. Thus, the ANN model 

will be advantageous as a decision supporter because 

it can quickly provide real-time solutions. 
 

4. CONCLUSION  
An equation for predicting the water level profile 

in a gradually varied flow has been developed using 

the ANN procedure. The equation obtained is an 

explicit form of the ANN model. The ANN model 

consists of 3 layers: the input layer consists of four 

nodes, the hidden layer has seven nodes and one node 

in the output layer. The ANN model was built using 

a database obtained from numerical model simulation 

results for various flow parameters, such as 

discharge, roughness, flow height at the channel's 

downstream end, and the distance and flow depth 

along the channel. The input parameters used are 

parameters related to distance x, discharge, 

roughness, and depth of flow at the downstream end 

of the channel. The output parameter is the flow 

depth at various points. The model has been used to 

estimate the water level profile in the channel for 

different flow conditions. The results of the 

comparison between the explicit ANN model and the 

numerical model results are very satisfactory, where 

the water level profiles of the two models are almost 

identical. Models can be developed for more complex 

flows and on non-prismatic channels. The explicit 

ANN model is promising to be used as a decision 

support tool. 
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